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Project specification

The BioDynaMo project (http://biodynamo.web.cern.ch/) aims at creating a platform through
which life scientists can easily create, run, and visualize three-dimensional biological simulations.
Built on top of the latest computing technologies, the BioDynaMo platform will enable users to
perform simulations of previously unachievable scale and complexity, making it possible to tackle
challenging scientific research questions.

Current work concentrates on developing a distributed runtime which is the foundation to run
simulations in the cloud. The summer student will be involved in these activities.

The student should have good knowledge of C++ programming language and software de-
velopment tools (git, cmake). Prior knowledge in distributed systems and GPU programming is a
plus.

The project is scheduled from July 2nd to August 31st, 2018.
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Abstract

Computer simulations have become a very powerful tool for scientific research. In order to fa-
cilitate research in computational biology, the BioDynaMo project aims at a general platform for
biological computer simulations, which should be executable on hybrid cloud computing systems
[Breitwieser et al., 2016]. To that end, the project has achieved very good vertical scalability with
almost linear speedup on one node [Breitwieser, 2017]. This report describes the technical work
to scale BioDynaMo horizontally to more than one nodes while fully retaining current C++ simu-
lation code. A general axis-aligned box partitioning scheme which is aware of bordering regions
was implemented to divide the simulation space into smaller boxes, representing local tasks.
From there, a Python driver built up a task dependency tree so that Ray distributed framework
[Moritz et al., 2017] can manage task executions. Each task reassembles all the regions into a
bigger one, runs a simulation step on that, and disassembles it back into different regions for the
next step. The Ray framework was enhanced to take into account the local availability of these
different regions in scheduling. This technique allowed BioDynaMo to run a minimally modified
demo simulation in a distributed manner with the driver on the host and the workers in a docker
container, opened up the possibility of actual large-scale simulation. However, much more work
remains to be done to bring the distributed mode up to par with local mode.
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1 Introduction

a About BioDynaMo

BioDynaMo is a platform for biological simulation. It was started at CERN openlab in 2015 [Bre-
itwieser et al., 2015]. The project is released under Apache 2 open source license with source
code made available on Github [BioDynaMo authors].

The BioDynaMo code is written in the C++ programming language and divided into two main
parts: the runtime, and the actual simulation code. Life scientists define how simulation objects
are initialized and their precise interaction with other objects in simulation code; the runtime
executes the simulation in steps.

b About Ray

Ray distributed execution engine schedules and executes tasks on worker nodes. Tasks can be
written in the Python or Java programming language. A driver Python script (or Java application)
provides executable codes and contexts (e.g. global variables) for all the tasks and sets up the
dependency among them.

In a Ray cluster, the head node runs a Redis in-memory key-value database [Redis authors].
This is the global control store whose purpose is to store information about the whole cluster
(such as the cluster configuration, task specifications, where an object actually resides in) and
act as a pub-sub broker. Workers subscribe to the head node for updates to tasks, and objects.
Each worker node runs its own Plasma in-memory object store [Moritz and Nishihara, 2017].

It is important to note that when a task is scheduled in Ray, its “futures” (also known as
promises, or deferred) are returned immediately, even though the task may not be executed yet.

Before a task is executed on a worker node, the task’s inputs are fetched (maybe from a
remote object store) to the local object store. After a task completes, its outputs are, too, stored
in the local object store. Task Ta is said to depend on task Tb if one of the inputs to task Ta is one
of the outputs from task Tb.

c About the project

The project described in this report is about laying a stepping stone to distributed simulation in
BioDynaMo. The goal of the project is to execute a simple, existing demo on more than one
workers.

This is important to BioDynaMo because even though BioDynaMo scales up on one node
very well, the physical resources on one node will put the hard limit on that scaling. In order for
BioDynaMo to simulate a larger number of objects than it could currently, horizontal scaling with
distributed computing is the best option.

Unlike Kanellis et al. [2017], in which the authors implemented a messaging middleware with
an outlook to execution on the cloud, this project takes advantage of the distributed execution
that Ray has already provided and focuses on how a BioDynaMo simulation can be fitted into that
framework.

2 Method

As explained in About the project, the main challenge in this project is to fit a BioDynaMo’s simula-
tion in Ray’s execution framework. This includes the follwing two main tasks and an optimization.
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Figure 1: Illustrations of different 3D box partitioning schemes
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Figure 2: Halo regions bordering a box in red

a Work division

First of all, the work that is usually done on one node must now be divided into smaller tasks to
be distributed. Since BioDynaMo is an agent-based simulation [Breitwieser and Hesam, 2017]
where each cell only acts within its own sphere of influence, one way to divide the work is based
on space, similarly to Hauri [2013].

The global 3D simulation space is partitioned into axis-aligned smaller spaces that I call boxes.
At the moment, the user is responsible for the exact number of boxes along the x, y, and z axis.
For example, when ‘3-1-1’ is used, the user is telling the system that there are 3 boxes along the
x axis, 1 box along the y axis (i.e. do not partition along the y axis), and 1 box on the z axis, giving
a total of 3× 1× 1 = 3 boxes, as shown in figure 1.

Each of these boxes may border with at most 26 other boxes. These bordering boxes con-
tribute a small portion of their spaces that are called halo regions to the main box. These halo
regions allow for complete coverage of influence of any cell within the main box.

Each box has six faces. Each face yields a surface halo region. The intersection of two
adjacent surfaces (e.g. front and top surfaces) yields an edge halo region. And the intersection
of three adjacent surfaces (e.g. front-top-left) yields a corner halo region.

In figure 2, we see a cut out of some bordering boxes (in light blue) and halo regions sur-
rounding the red box. The box directly below the bottom surface of the red box (call it box 1)
would contribute its top surface halo region, the box to the right of box 1 (call it box 2) contributes
its top-left edge halo region, and then the box in front of box 2 contributes its top-left-back corner
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halo region.
It should be noted that a box is authoritative with respect to only the cells in its space. Because

of that, it is also authoritative of the halo regions that it will be contributing to other boxes, but it is
not authoritative in the halo regions that it pulls in.

b Connect BioDynaMo C++ and Ray Python

The next step is to construct a tree of tasks from the work division so that Ray can manage and
schedule them. These boxes directly correspond to tasks. Each box is worked on in one task.
The work essentially boils down to:

1. Obtain the halo regions for the box in consideration and assemble them together to form a
complete simulation space.

2. Execute a simulation step in this new formed space.

3. After the simulation step, extract the box and its halo regions to be used in the next step.

Because BioDynaMo (and the work partitioning described above) is written in C++, and Ray uses
Python as its driver, there are several technical issues in interoperability.

i Making use of C++ from Python

The first challenge is to make use of C++ code from the Python side so that Python tasks can, at
the very least, run C++ simulation code. There are many options here and the selected solution
was to use the built-in ctypes module as a foreign function interface (FFI) between Python and
C++.

The C++ code is compiled into a shared library with all the needed functions exported as C
symbols (with the keyword extern). From the Python side, ctypes will load with shared library
as CDLL object, and invoke the functions as thought they were Python methods on that object.
The C++ primitive returned values (such as int, double, etc.) are translated to Python types
transparently. For bigger objects such as a struct, or an array, the Python side will allocate
memory first, pass the pointer to that memory range, and the C++ side will fill in that buffer.

With this solution, we were able to share the partitioning and simulation logic between C++
and Python. For the partitioning logic, these functions were exported from the C++ side:

bdm_get_box_count Returns the total number of boxes in the chosen partitioning scheme.

bdm_get_neighbor_surfaces Returns the number of neighbors and their corresponding halo
regions. The list of neighbor identification and corresponding halo region is also returned
as an output argument.

The simulation in general made use of these functions:

bdm_setup_ray Passes Ray cluster information and simulation parameter (such as partitioning
scheme) from Python to C++ side.

bdm_simulate_step Assembles halo regions into a box, runs one simulation step on the bigger
space, and stores the box and halo regions from the box for next step as blobs in the Plasma
object store. The serialization and deserialization are done by ROOT framework [Brun and
Rademakers, 1996].

Distributed BioDynaMo 3
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Tasks Boxes
Inputs Contributed halo regions

Outputs Authoritative halo regions
Managed by Ray Managed by BioDynaMo runtime

Table 1: Paralellism between tasks and boxes

ii Building task dependency tree

Another problem is to translate the requirements of halo regions into task dependencies.

Initially, the global simulation space is created with all simulation objects in it. This space is
partitioned into boxes. Each box is authoritative for the halo regions that it will contribute to other
boxes.

Then for each of the n simulation steps, each box will have to obtain the halo regions from
its neighboring boxes to assemble a bigger space. These halo regions are the dependencies of
a task, which simply calls into bdm_simulate_step. After the simulation step is done, the task
produces 27 returned values, representing the main box, and its 26 halo regions, for use in the
next simulation step that will be worked on by another task.

The parallelism between tasks and boxes is summarized in table 1.

As discussed in About Ray, Ray manages the inputs and outputs of a task transparently.
There is no connection between an input or output of a task to a halo region or a box in the
BioDynaMo runtime. But due to this parallelism, we can construct a simple scheme to map
between task inputs and outputs to boxes and halo regions.

First, the initialization of the simulation will be a task which will return b× 27 matrix of dummy
values where b is the total number of boxes. Each row in this matrix comprises of a main box and
its 26 halo regions. Let’s call this matrix laststep.

The first simulation step of a box, then, will depend on the dummy object in laststep that repre-
sents the box under consideration, as well as all other dummy objects in laststep that correspond
to the halo regions that this box should pull in. The outputs from this task will be an array of 27
dummy values, slotted in a matrix called thisstep at the row corresponding to the box in question.
When all boxes in the first step are done, we swap the two matrices laststep and thisstep.

Then we repeat until we’ve completed all n simulation steps.

Finally, when all steps are done, we schedule one final task that depends on all b main boxes
in laststep to signal the end of the simulation.

Note that this process does not actually execute any task but merely schedules all the tasks
with proper dependencies.

Figure 3 depicts the task tree for a simulation following the 2-1-1 partitioning scheme.
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Figure 3: Task tree of a 2-1-1 partitioning scheme

c Consider local availability of blobs

This is an optimization to help with executing tasks on the node that has the most data locally
available to it.

In Building task dependency tree, we used the returned futures to represent the main box and
required halo regions. Ray generates deterministic identifiers for these futures when a task is
scheduled and thus the C++ code cannot make use of these IDs. Because these identifiers are
(certainly) different from the identifiers of the blobs, as generated by the C++ at execution time,
the schedulers do not know about the sizes of the actual blobs.

However, since the IDs of the blobs are deterministically generated, we could force Ray to
use these IDs for the returned futures, and hence when the actual blobs are made available later,
their sizes will be taken into account by the schedulers.

This optimization requires an enhancement in Ray so that its remote functions will also take
in a list of identifiers to be used for the returned futures, and no deserialization will be performed
when these blobs are fetched. This also means that the Python and C++ side must agree on the
method to generate these IDs.

3 Result

With the method discussed, we have achieved the following encouraging results.

1. For the first time, a BioDynaMo simulation was run in a multi-process, multi-node setup. We
launched a Ray cluster in 2 docker containers each having 2 worker processes, and ran the
driver on yet another docker container, all in a 4-core machine.

2. Virtually no change to the current simulation code. The only minor change (to switch to
RaySimulation) could be integrated into the runtime portion of BioDynaMo later.
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3. The driver is also able to run the simulation in a local setup, in the same way these simula-
tions have always been run before.

4 Future work

As positive as the results could be, there are many outstanding issues that have to be addressed
for the distributed mode of execution to be useful.

a Reconcile movement of simulation objects

The simulation objects are currently assumed to not move from one region to another. This is
always a false assumption and must be relaxed.

On top of that, reconciliation of the movement is also required. For example, if a cell from one
box moves across the border to its neighbor box, the neighbor must be informed of that. In this
case, there is a change in authoritative source of the cell. Conversely, to save compute time, we
might skip the cells in the halo regions that a task pulls in, since those cells are not in the space
that this task is authoritative for.

b Alleviate serialization and deserialization overhead

We are seeing around 90% of execution time is spent on reassembling and disassembling of the
halo regions. This time is attributed mostly to the serialization and deserialization of the blobs
from Plasma store. Even though these blobs are in a shared memory among all processes on
the same node, they cannot be directly treated as regular simulation objects. If the BioDynaMo
runtime could devise a mechanism to store objects in a position independent manner, that would
alleviate this major overhead.

c Ensure deterministic simulation

Random number generators are used extensively in simulations. In a local execution, there is only
one generator used by all threads. In distributed mode, a task could run on a random node, which
means that the source of random number is not deterministic. This affects reproducibility of the
simulation. There needs to be a more deterministic way to seed the random number generator at
the start of each task.

d Relieve memory usage and support resumption

Since the simulation happens in locked steps, it is possible to remove blobs from at least 2
generations ago. This will require enhancements to Plasma object store because it currently
does not offer APIs to do that.

In the same vein, it should be possible to resume the simulation from any step in case of
sudden failures of any node, or inavailability of any removed blob.

e Distribute the initialization of the global space

The initialization of the global space is done in one node at the moment. Because we partition
the global space into cubes, this work could also be distributed across the whole cluster. Care
must be taken to make this step resumable, too.
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f Validate simulation results

We have validated that the simulation can run in a distributed manner but no effort has been
spent on validating the correctness of the simulation results.

g Upstream enhancements to Ray

It could be helpful to work out a more comprehensive solution and upstream the modifications we
have made to Ray (see Consider local availability of blobs).

5 Conclusion

Due to off-loading of execution to Ray framework, we were able to make BioDynaMo run its first
distributed demo within two months with virtually no change to existing simulation logic. The
results are encouraging but still far from being useful. Much more work needs to be done to
carry out a reproducible and realistic simulation, reduce resource consumption both in storage
and compute, and validate the simulation results.

6 Postscript

This report was written about 2 weeks before the end of the project. Since then, some of the
recommended future works were also designed and implemented, the most important one being
mentioned in Reconcile movement of simulation objects. This section discusses more about that
work.

Originally, the halo regions were internal to a box. This ensured that all the simulation objects
contained in the halo regions were under the authority of the box. This work expanded the halo
regions outside the box so that it would be able to catch the simulations objects that had moved
from inside to outside the box.

There were three main issues to tackle in this design. The first was to keep track of the
simulation objects that were originally in a main box so that the simulation step only applied to
them, and their movements were fully captured. The second was to limit simulation to a limited
portion of a resource manager (an container of all simulation objects). The third was to accept
a manually specified global bounding box that all simulation objects were assumed lost if they
moved out.

The first issue was solved by arranging the simulation objects within the bounds of a main box
to the front of the resource manager. We only needed, then, to keep track of how many of them
there were. When iterating through the resource manager again, if the object was among these
very first objects, we knew that this box was authoritative for it.

• At re-assembling time, all simulation objects in the main box were automatically copied
to the resulting resource manager because all simulation objects here should have been
within the bounds. Then we traversed through all 26 halo regions to append inside-the-box
simulation objects to the resource manager. A current count of all simulation objects was
taken at this step. These objects would be the managed simulation objects. Finally, another
traversal pass was done to copy remaining simulation objects to the resource manager.
These are unmanaged objects.

• At dis-assembling time, only managed objects are considered. Each managed simulation
object was copied to its corresponding main and halo regions. For example, if the managed
object had moved from one inside corner to outside the box, it would be copied to all the
halo regions overlapping where it was right now, and it would not be copied to the main box
for the next step.
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Figure 4: 2D illustration of halo regions involved when one simulation object moves

In 2D, figure 4 illustrates all participating halo regions when a simulation object moved from inside
a corner to outside the box. The object is removed from the main region (gray square), copied to
the halo regions (yellow, blue, and red rectangles).

Figure 4 also depicts another problem. When an object in the upper left box moved out of
the global bounds, since no tasks would pull that green halo region in, that object would be
lost. Therefore, the users should appropriately size this global bounding box to the scale of
the simulation. An alternative approach here is to adjust the global bounding box dynamically
after each step. But this approach introduces a synchronization point and much more complexity
because repartitioning might be necessary due to the size adjustment.

Distributed BioDynaMo 8
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